|
By Dorcas Coleman For the typical East Coast resident, the word “earthquake” doesn’t present itself in conversation very often, except for those occasions when lamenting the misfortunes befallen citizens of the so-called Left Coast. I certainly don’t lose any sleep fretting over whether my house and belongings could withstand a good jolt. That being said, I’m sitting at my desk mid-afternoon on December 9 of last year when I feel the building that I’m in (DNR headquarters in Annapolis), slightly sway. The sensation I experienced was the result of an earthquake that originated about 175 miles away in central Virginia. The relatively minor tremor registering 4.5 on the Richter scale was centered about halfway between Charlottesville and Richmond, southeast of the small town of Columbia. An earthquake? In Maryland? Can’t be. Oh yes it can. Although Maryland – or the East Coast in general – is not an area known for its seismic activity, mild tremors, most barely perceptible, are more commonplace than one might guess.
This
you already know about earthquakes: They are among the most devastating and
terrifying of natural hazards. While floods, tornadoes and hurricanes account
for much greater annual loss in the United States, severe earthquakes pose the
largest risk in terms of sudden loss of life and property. During an earthquake, the rock on one side of the fault suddenly slips, generating seismic waves that radiate in all directions from the focus – the point of an earthquake’s origin within the earth – much as ripples radiate outward when a pebble is dropped into a pool of water. The two basic types of seismic waves are body or primary waves, which travel through the interior of the earth, and surface waves, which travel along the earth’s surface and are believed to be responsible for most damage. How destructive an earthquake will be depends on many factors, chief among them being the amount of seismic energy released, duration of shaking, depth of focus (the shallower the focus usually the greater the potential for destructive shock waves reaching the earth’s surface), distance from epicenter (the point of ground directly above the focus), population and building densities, and time of day that the earthquake takes place. Ninety percent or more of all earthquakes are shallow (0-40 miles to the focus) and occur along boundaries between large, slowly moving slabs, or plates, of the earth’s crust and upper mantle. Most very shallow earthquakes can be attributed to the fracturing of brittle rock in the crust or relief of internal stresses due to frictional resistance locking opposite sides of a fault. But they can also be triggered by volcanic activity, large landslides, and even some types of human activity. However, in areas not known for frequent earthquakes, pinpointing the cause of the rare tremor can be very difficult. Measuring A Quake’s
Strength |
![]() Q: Can animals predict earthquakes? A: Changes in animal behavior cannot be used to predict earthquakes. Even though there have been documented cases of unusual animal behavior prior to earthquakes, a reproducible connection between a specific behavior and the occurrence of an earthquake has not been made. Animals change their behavior for many reasons and given that an earthquake can shake millions of people, it is likely that a few of their pets will, by chance, be acting strangely before an earthquake. Q: Will California eventually fall off into the ocean? A: No. The San Andreas Fault System, which crosses California from the Salton Sea in the south to Cape Mendocino in the north, is the boundary between the Pacific Plate and North American Plate. The Pacific Plate is moving in northwest with respect to the North American Plate at approximately 46 millimeters per year (the rate your fingernails grow). The strike-slip earthquakes on the San Andreas Fault are a result of this plate motion. The plates are moving horizontally past one another, so California is not going to fall into the ocean. However, Los Angeles and San Francisco will one day be adjacent to one another! Q: What is the biggest earthquake ever? A: Since 1900, the earthquake in Chile on May 22, 1960, is the biggest in the World with magnitude 9.5 Mw. Q: What is the biggest earthquake in the United States? A: Since 1900, the earthquake in Alaska on March 28, 1964, is the biggest earthquake in the United States, with magnitude 9.2 Mw. This earthquake is also the second biggest earthquake in the World. Q: Which States have the most earthquakes? A: Alaska and California. Q: I want to move to a place that doesn’t have earthquakes. Where can I go? A: Antarctica has the least earthquakes of any continent, but small earthquakes can occur anywhere in the world. Information taken directly from the USGS
Earthquake Hazards Program website earthquake.usgs.gov | |
|
Measurement of the severity of an earthquake is
expressed in terms of intensity and magnitude. Intensities,
reported on the Modified Mercalli Intensity (MMI) Scale, are based on eyewitness
accounts and ranked on a 12-level scale ranging from barely perceptible (I) to
total destruction (XII). Lower intensities are described in terms of people’s
reactions and sensations, whereas higher intensities relate mainly to observable
structural damage as well as such extreme phenomena as visible surface waves and
objects being tossed into the air.
Magnitude is related to the amount of seismic energy released at the focus of an earthquake. It is based on the amplitude, or size, of seismic waves as recorded on standardized seismographs. The standard for magnitude measures is the Richter scale expressed in whole numbers and decimal fractions. As a general rule of thumb, damage is slight at the magnitude 4.5 level, becomes moderate at about 5.5, and above 6.5 or so can range from considerable to nearly total. Since 1900, the strongest earthquake on record
was a monster 9.5 magnitude quake that ravished the South American country of
Chile on May 22, 1960. A 9.2 magnitude earthquake that rocked Alaska on March
28, 1964 holds the distinction of being the largest to ever hit the United
States. By comparison, the famous San Francisco earthquake of 1906 had an
estimated magnitude of a mere 7.7. The last earthquake to cause appreciable damage in the eastern United States occurred well over 100 years ago, in 1886 near Charleston, South Carolina. It had an estimated magnitude of 6.5-7, an intensity of X, and was felt over an area of 2million square miles. Marylanders are more likely to feel an out-of-state quake than one centered within the state’s borders, with some originating as far away as the St. Lawrence Valley and Timiskaming, Canada. As evidenced by the origin of the quake felt this past December, southwestern and central Virginia and the Atlantic seaboard northward from Wilmington, Delaware have significantly more seismic activity than Maryland. One out-of-state earthquake that was felt in much of Maryland occurred Easter Sunday, April 22, 1984. In fact, it was felt in eight states and Washington, D.C., an area of approximately 19,000 square miles. Registering 4.1 on the Richter scale, the quake was centered about 12 miles south of Lancaster, Pennsylvania. Its most notable effects here were recorded in the northeastern part of the state where hanging pictures fell in Conowingo, windows cracked in Elkton and Joppa, and standing vehicles rocked slightly in Union Bridge. The quake was preceded by a 3.0-magnitude tremor four days earlier, and 10 aftershocks were reported over the following four days, registering 2 to 2.5 magnitudes. As of late 1993, 47 earthquakes were known to
have been centered within the state’s borders. Over the next 10 years that total
reached 61. Of these quakes, two occurred in the Valley and Ridge region of
Allegany and western Washington Counties, 36 were in the Piedmont region of
northern and central Maryland, and 10 were in the tidewater or Coastal Plain
Province.
So what was it like, the tremor from that 4.5 quake that rippled through the Annapolis region back in December? I compare it to the sensation I’ve had when stopped in traffic high atop the Bay Bridge, when a big gust of wind seems to get up under your car. It makes you catch your breath, wondering whether what you feel is real or just a product of an overactive imagination. It also excites an instinctive desire to move – quickly! - as if one could easily flee what is going on below. But most of all, it awakened me to the vulnerabilities of the earth beneath my feet, making me ever more grateful to be on Maryland’s relatively steady shores.
| ||